РУБРИКА РУБРИКА

УДК 517.997.56:669.18.046.5:536.42

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОТОКОМ ТЕПЛА В ЗАТВЕРДЕВАЮЩЕМ МЕТАЛЛЕ, НАХОДЯЩЕМСЯ В МНОГОФАЗНОМ СОСТОЯНИИ, С ЦЕЛЬЮ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК ТВЕРДОЙ ФАЗЫ

© 2003 г. В. К. Толстых, Н. А. Володин, В. Е. Черноног

Донецкий национальный университет, Украина Поступила в редакцию 31.01.2002 г.

Рассматривается задача оптимального охлаждения многофазного непрерывного вертикального цилиндрического слитка металла с целью улучшения характеристик твердой фазы. Для определения оптимальных значений теплоотвода применен прямой экстремальный подход, основанный на вычислении градиента критерия качества слитка. Критерий включает влияние термических напряжений и степени дисперсности дендритной структуры на качество остывающего слитка.

введение

Проблема получения качественных непрерывных слитков при затвердевании металлических расплавов является весьма актуальной. Для получения высококачественного металла необходимо найти оптимальные режимы затвердевания, при реализации которых будут наблюдаться минимальные градиенты температуры в металле, так как качество слитка в основном определяется градиентами температуры в затвердевшей части. Минимизация градиентов температур приводит к увеличению вероятности образования дендритной структуры и достаточной ее разветвленности. Увеличение плотности дендритного строения определяет более высокие механические свойства литого металла.

Постановка задачи. Рассмотрим вертикальный непрерывный цилиндрический слиток, на который сверху заливается расплавленный металл. Устройство-кристаллизатор (первичное охлаждение) создает тонкую твердую корку и опускает слиток вниз. На выходе из кристаллизатора металл находится в жидком, двухфазном и твердом состояниях. Задачей вторичного охлаждения является перевод металла в твердое состояние с минимальными остаточными градиентами температуры и дисперсностью дендритной структуры в твердой фазе. Таким образом, для получения качественного металла следует найти оптимальный поток тепла на поверхности трехфазного слитка в области вторичного охлаждения. Критерий качества формирования металла можно записать в виде [1-3]

$$J_{1} = \iint_{0}^{RZ} \left[\left(\frac{\partial T}{\partial r} \right)^{2} \Theta(r - r_{s}) + \chi_{1} \left(\left(\frac{\partial T}{\partial r} \right)^{2} + \left(\frac{\partial T}{\partial z} \right)^{2} \right)^{1/2} \Theta(r - r_{L}) \Theta(r - r_{s}) \right] r dr dz,$$
(1)

где R – радиус слитка; Z – координата завершения зоны вторичного охлаждения; r_L , r_S – координаты границ ликвидуса и солидуса, разделяющие три фазы состояния металла. Первая часть функционала J представляет величину радиальных термических градиентов, вторая характеризует дисперсность дендритной структуры металла. Коэффициент χ_1 определяет важность этих факторов и задается исходя из конкретных технических требований к характеристикам металла.

Установившееся распределение температур в цилиндрическом слитке описывается уравнением

$$\frac{1}{r\frac{\partial}{\partial r}}\left(r\lambda\frac{\partial T}{\partial r}\right) - C\rho V\frac{\partial T}{\partial z} = 0,$$

(r, z) $\in \Sigma = [0, R] \times [0, Z],$

в котором T(r, z) – температура металла, V – скорость литья, $\rho(T)$ – плотность металла; C(T) и $\lambda(T)$ – эффективные теплоемкость и теплопроводность, определяемые из соотношений

$$\rho = \rho_L(1-\xi) + \rho_S \xi, \quad \lambda = \lambda_L(1-\xi) + \lambda_S \xi,$$

$$C = \begin{cases} C_L, & T \ge T_L \\ C_L(1-\xi) + C_S \xi - W \frac{\partial \xi}{\partial T}, & T_L > T > T_S \\ C_S, & T \le T_S, \end{cases}$$

(2)

где ξ – доля твердой фазы, определяемая как $\xi = 1 - \left(\frac{T_0 - T}{T_0 - T_L}\right)^{-1/(1-k)}$. Граничные условия имеют вид

$$\frac{\partial T}{\partial r}\Big|_{\substack{r=0\\0
$$\lambda_s \frac{\partial T}{\partial r}\Big|_{\substack{r=R\\0
$$\frac{\partial T}{\partial r}\Big|_{s} = u, \quad S = \{r, z: r=R, \quad z_C < z < Z\}.$$$$$$

Здесь T_0 – температура заливки металла в кристаллизатор; γ – коэффициент теплопередачи; T_C – температура воды в кристаллизаторе; z_C – нижняя граница кристаллизатора; u(z) – тепловой поток в зоне вторичного охлаждения.

Метод решения. Задача управления качеством слитка формулируется следующим образом. Необходимо найти оптимальный поток тепла u(z) в граничном условии (2), который минимизирует функционал (1) при заданном χ_1 .

Для определения оптимальных режимов охлаждения был применен прямой экстремальный подход, основанный на непосредственной минимизации целевого функционала J_1 методом с регулируемым направлением спуска [4–6], когда функция u(z) ищется в виде

$$u^{k+1}(z) = u^{k}(z) - b^{k} \alpha^{k}(z) \nabla J(u^{k}; z)$$
 на *S*, (3)

где k = 0, 1, 2... - номер итерации. Функция $\alpha(z)$ регулирует сходимость $u^k \longrightarrow u_*$, согласно необходимому условию оптимальности [4], в форме

$$\nabla J(u^k; z) \longrightarrow 0$$
 равномерно по z при $u^k \longrightarrow u_*.(4)$

Алгоритм (3) с реализацией условия (4) позволяет решать бесконечномерные задачи оптимизации без преобразований управлений к конечномерным векторам. Заметим, что классические градиентный метод и метод сопряженных градиентов не имеют обоснования для решения бесконечномерных задач оптимизации.

Проблемы практической реализации метода (3) заключаются в выборе функций $\alpha^k(z)$ для удовлетворения условия (4). Для приблизительной реализации (4) использовалась идея шаблонных приближений на первой итерации [4]. Пусть первое приближение $u_1(z)$ является некоторой заранее известной функцией $\varphi(z)$ (шаблонная функция), градиент которой $\nabla J(\varphi; z)$ удовлетворяет условию (4) для k = 1 (т.е. равномерно убывает после первой итерации). При этом из (3) можем найти

$$\alpha^{0}(z) = \left| \frac{\varphi(z) - u^{0}(z)}{\nabla J(u^{0}; z)} \right|, \quad \nabla J(u^{0}; z) \neq 0 \ \forall z \in S.$$

На следующих итерациях параметр $\alpha(z)$ не меняется. В данном методе требуется сделать несколько пробных первых итераций для подбора подходящей шаблонной функции $\varphi(z)$, удовлетворяющей (4). В рассматриваемой задаче было выбрано $\varphi(z) = 0.2u^0(z)$.

Глубина спуска на каждой итерации вдоль выбранного направления минимизации $a^k \nabla J^k$ определялась числом b^k по методу

 $\begin{cases} если \ J^{k+1} \le J^k, \text{ тогда } b^{k+1} = b_1 b^k, \quad b_1 > 1, \\ если \ J^{k+1} > J^k, \text{ тогда повторяется предыдущая} \\ итерация при \ b^{k-1} = b_2 b^k, \ 0 < b_2 < 1. \end{cases}$

Градиент целевого функционала J_1 вычислялся из соотношения

$$\nabla J_1 = -\lambda f, \tag{5}$$

в котором f(r, z) – решение сопряженной задачи, имеющей следующий вид:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\lambda\frac{\partial f}{\partial r}\right) + c\rho V\frac{\partial f}{\partial z} - \frac{\partial\lambda}{\partial T}\frac{\partial T}{\partial r}\frac{\partial f}{\partial r} - V\frac{\partial c\rho}{\partial T}\frac{\partial T}{\partial z}f + A = 0, \quad (r, z) \in \Sigma,$$
$$\frac{\partial f}{\partial r}\Big|_{\substack{r=0\\z_{C} < z < Z}} = 0, \quad \lambda_{S}\frac{\partial f}{\partial r}\Big|_{\substack{r=R\\z_{C} < z < Z}} = = \\ = -B\Theta(r - r_{S})\Theta(r - r_{L})\frac{\partial T}{\partial r},$$
$$f\Big|_{\substack{0 < r < R\\z = Z}} = -\frac{B\Theta(r - r_{S})\Theta(r - r_{L})\frac{\partial T}{\partial z}}{c\rho V},$$

где

$$A = \left\{ \Theta(r - r_L)\Theta(r - r_S)r\left[\frac{\partial}{\partial r}\left(B\frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial z}\left(B\frac{\partial T}{\partial z}\right)\right] \right\} + B\frac{\partial T}{\partial r}\left(\delta(r - r_L) + \delta(r - r_S)\right),$$
$$B = \left[\left(\frac{\partial T}{\partial r}\right)^2 + \left(\frac{\partial T}{\partial z}\right)^2\right]^{-1/2}.$$

Легко видеть, что минимизации J_1 в рассматриваемой постановке задачи приведет к росту жидкой и двухфазной зоны металла и тем самым к

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 41 № 2 2003

исчезновению твердой фазы. Это означает, что необходимы дополнительные ограничения, снижающие объем жидкой фазы и двухфазного состояния.

Добавим ограничение на объем жидкой фазы [3, 5]

$$J_2(u) = \iint_{0}^{RZ} \Theta(T - T_S) r dr dz$$
(6)

и ограничение на температуру выхода металла из зоны вторичного охлаждения, которое имеет вид штрафного функционала [7, 8]

$$J_F = \int_{0}^{R} I_F dr, \quad I_F = \begin{cases} (T - T_{\text{max}})^2, & T > T_{\text{max}} \\ 0, & T < T_{\text{max}}. \end{cases}$$
(7)

Таким образом, получаем функционал, подлежащий минимизации

$$J(u) = J_1 + \chi_2 J_2 + \chi_3 J_F.$$

Значения всех весовых коэффициентов χ определяют технические характеристики металла. Для заданных χ будем находить оптимальные режимы охлаждения.

Градиент функционала *J* определяется из выражения (5) через решение уравнения (6) с измененным граничным условием

$$f\Big|_{\substack{0 < r < R \\ z = Z}} = -\frac{B\chi_1\Theta(r - r_S)\Theta(r - r_L)}{c\rho V} \times \frac{\partial T}{\partial z} - \frac{2\chi_3}{c\rho V}(T - T_{\max})$$

и свободным членом

$$A = \left\{ \Theta(r - r_L)\Theta(r - r_S)r\left[\frac{\partial}{\partial r}\left(B\frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial z}\left(B\frac{\partial T}{\partial z}\right)\right] + B\frac{\partial T}{\partial r}\left(\delta(r - r_L) + \delta(r - r_S)\right) \right\}\chi_1 + 2\left[\left(r\frac{\partial^2 T}{\partial r^2} + \frac{\partial T}{\partial r}\right)\Theta(r - r_S) + r\frac{\partial T}{\partial r}\delta(r - r_S) + \chi_2\delta(r - r_S)\right].$$

Численный эксперимент проводился при следующих значениях параметров. Длина зоны вторичного охлаждения составляла Z = 15 м, длина кристаллизатора – $z_C = 1$ м, коэффициент теплопередачи в кристаллизаторе – $\gamma = 800$ Вт/(м² °C), температура воды в кристаллизаторе – $T_C = 20$ °C, диаметр слитка – D = 0.2 м (из стали СТЗ), равно-

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 41 № 2

Оптимальные тепловые потоки: $1 - \chi_1 = 0, \chi_3 = 0, \chi_2 = 3 \times 10^7; 2 - \chi_1 = 0, \chi_2 = 10^7, \chi_3 = 10^3, 3 - \chi_1 = 10^5, \chi_2 = 10^7, \chi_3 = 10^3.$

весный коэффициент распределения примесей – k = 0.4. За начальное приближение для потока тепла принималось значение $u^0 = 400 \text{ кДж/(м}^2\text{c})$.

Анализ результатов расчетов. Были исследованы оптимальные режимы охлаждения и влияние весовых коэффициентов χ на вид оптимальных кривых. При минимизации градиентов температуры с ограничением на объем жидкой фазы, но без ограничений на уровень дисперсности и температуру, т.е. при $\chi_1 = \chi_3 = 0$, $\chi_2 = 3 \times 10^7$ и $b_1 = 1.2$, $b_2 = 0.4$, была получена сходимость алгоритма (3) за 17 итераций. Полученный оптимальный поток u(z) представлен на рисунке (кривая 1). При этом градиенты температуры уменьшились в 6.6 раз, а объем жидкого состояния увеличился в 1.1 раза. Этого следовало ожидать, поскольку при уменьшении оттока тепла u(z) объем жидкого состояния должен возрастать, а градиенты температуры по сечению твердой фазы – уменьшаться.

При минимизации градиентов температур твердой фазы и объема жидкой фазы с учетом ограничения на температуру выхода слитка, т.е. при χ_1 = 0, χ_2 = 10⁷, χ_3 = 10³, сходящееся решение по алгоритму (3) было получено за 18 итераций. Для этого случая оптимальный тепловой поток представлен кривой 2 на рис. 1. При этом градиенты температур в твердой фазе металла уменьшились в 2.2 раза, а уровень дисперсности составил 8.6 × 10².

В результате минимизации уровня дисперсности при ограничениях на объем жидкого состояния и температуру выхода слитка, а также при требовании минимальности градиентов температуры в твердой фазе металла при $\chi_1 = 10^5$, $\chi_2 = 10^7$, $\chi_3 = 10^3$ получена сходимость алгоритма (3) за 18 итераций. Распределение оптимального потока для этого случая приведено на рис. 1 кривой 3. При

2003

найденном тепловом потоке уровень дисперсности дендритных ветвей уменьшился по сравнению с предыдущим расчетом в 1.1 раза.

Таким образом, прямой экстремальный подход [4] позволил решить задачу управления качеством непрерывной разливки металла с учетом минимальных градиентов температуры в твердой фазе и степени дисперсности дендритной структуры.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ефимов В.А. Разливка и кристаллизация стали. М.: Металлургия, 1976. 552 с.
- 2. Манохин А.И., Уразаев Р.А., Матевосян Е.П. и др. Влияние теплофизических условий затвердевания на структуру литого металла // Металловедение и термическая обработка металлов. 1972. № 11. С. 56.

- 3. Соболев В.В., Трефилов П.М. Теплофизика затвердевания металла при непрерывном литье. М.: Металлургия, 1988. 160с.
- 4. Толстых В.К. Прямой экстремальный подход для систем с распределенными параметрами. Донецк: Юго-Восток, 1997. 177 с.
- 5. Огурцов А.П., Недопекин Ф.В., Толстых В.К., Володин Н.А. Прямая оптимизация теплофизических процессов. Донецк: Юго-Восток, 1997. 150 с.
- Толстых В.К. Новый метод минимизации функционалов для задач оптимизации с уравнениями в частных производных. Тез. 1-й Междунар. конф. "Численные методы в гидравлике и гидродинамике". 1994. С. 112.
- 7. Дюдкин Д.А. Качество непрерывнолитой стальной заготовки. Киев: Техника, 1988.
- 8. *Tolstykh V.K.* Volodin N.A. Optimal Control by Heat Flow in Continuous Casting Steel. Proc. Sump. Operations Research, Braunschweig, Germany, 1996. P. 480.